Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Cogn Neurosci ; : 1-19, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713878

ABSTRACT

Stress is widely considered to negatively impact hippocampal function, thus impairing episodic memory. However, the hippocampus is not merely the seat of episodic memory. Rather, it also (via distinct circuitry) supports statistical learning. On the basis of rodent work suggesting that stress may impair the hippocampal pathway involved in episodic memory while sparing or enhancing the pathway involved in statistical learning, we developed a behavioral experiment to investigate the effects of acute stress on both episodic memory and statistical learning in humans. Participants were randomly assigned to one of three conditions: stress (socially evaluated cold pressor) immediately before learning, stress ∼15 min before learning, or no stress. In the learning task, participants viewed a series of trial-unique scenes (allowing for episodic encoding of each image) in which certain scene categories reliably followed one another (allowing for statistical learning of associations between paired categories). Memory was assessed 24 hr later to isolate stress effects on encoding/learning rather than retrieval. We found modest support for our hypothesis that acute stress can amplify statistical learning: Only participants stressed ∼15 min in advance exhibited reliable evidence of learning across multiple measures. Furthermore, stress-induced cortisol levels predicted statistical learning retention 24 hr later. In contrast, episodic memory did not differ by stress condition, although we did find preliminary evidence that acute stress promoted memory for statistically predictable information and attenuated competition between statistical and episodic encoding. Together, these findings provide initial insights into how stress may differentially modulate learning processes within the hippocampus.

2.
Trends Neurosci ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38570212

ABSTRACT

The functional properties of the infant brain are poorly understood. Recent advances in cognitive neuroscience are opening new avenues for measuring brain activity in human infants. These include novel uses of existing technologies such as electroencephalography (EEG) and magnetoencephalography (MEG), the availability of newer technologies including functional near-infrared spectroscopy (fNIRS) and optically pumped magnetometry (OPM), and innovative applications of functional magnetic resonance imaging (fMRI) in awake infants during cognitive tasks. In this review article we catalog these available non-invasive methods, discuss the challenges and opportunities encountered when applying them to human infants, and highlight the potential they may ultimately hold for advancing our understanding of the youngest minds.

3.
Brain Stimul ; 17(2): 339-345, 2024.
Article in English | MEDLINE | ID: mdl-38490472

ABSTRACT

OBJECTIVE: To prospectively investigate the utility of seizure induction using systematic 1 Hz stimulation by exploring its concordance with the spontaneous seizure onset zone (SOZ) and relation to surgical outcome; comparison with seizures induced by non-systematic 50 Hz stimulation was attempted as well. METHODS: Prospective cohort study from 2018 to 2021 with ≥ 1 y post-surgery follow up at Yale New Haven Hospital. With 1 Hz, all or most of the gray matter contacts were stimulated at 1, 5, and 10 mA for 30-60s. With 50 Hz, selected gray matter contacts outside of the medial temporal regions were stimulated at 1-5 mA for 0.5-3s. Stimulation was bipolar, biphasic with 0.3 ms pulse width. The Yale Brain Atlas was used for data visualization. Variables were analyzed using Fisher's exact, χ2, or Mann-Whitney test. RESULTS: Forty-one consecutive patients with refractory epilepsy undergoing intracranial EEG for localization of SOZ were included. Fifty-six percent (23/41) of patients undergoing 1 Hz stimulation had seizures induced, 83% (19/23) habitual (clinically and electrographically). Eighty two percent (23/28) of patients undergoing 50 Hz stimulation had seizures, 65% (15/23) habitual. Stimulation of medial temporal or insular regions with 1 Hz was more likely to induce seizures compared to other regions [15/32 (47%) vs. 2/41 (5%), p < 0.001]. Sixteen patients underwent resection; 11/16 were seizure free at one year and all 11 had habitual seizures induced by 1 Hz; 5/16 were not seizure free at one year and none of those 5 had seizures with 1 Hz (11/11 vs 0/5, p < 0.0001). No patients had convulsions with 1 Hz stimulation, but four did with 50 Hz (0/41 vs. 4/28, p = 0.02). SIGNIFICANCE: Induction of habitual seizures with 1 Hz stimulation can reliably identify the SOZ, correlates with excellent surgical outcome if that area is resected, and may be superior (and safer) than 50 Hz for this purpose. However, seizure induction with 1 Hz was infrequent outside of the medial temporal and insular regions in this study.


Subject(s)
Seizures , Humans , Male , Female , Seizures/physiopathology , Seizures/surgery , Adult , Prospective Studies , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/therapy , Young Adult , Adolescent , Electric Stimulation/methods , Middle Aged , Electrocorticography/methods
4.
Perspect Psychol Sci ; 19(1): 103-125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37390333

ABSTRACT

The multiple-memory-systems framework-that distinct types of memory are supported by distinct brain systems-has guided learning and memory research for decades. However, recent work challenges the one-to-one mapping between brain structures and memory types central to this taxonomy, with key memory-related structures supporting multiple functions across substructures. Here we integrate cross-species findings in the hippocampus, striatum, and amygdala to propose an updated framework of multiple memory subsystems (MMSS). We provide evidence for two organizational principles of the MMSS theory: First, opposing memory representations are colocated in the same brain structures; second, parallel memory representations are supported by distinct structures. We discuss why this burgeoning framework has the potential to provide a useful revision of classic theories of long-term memory, what evidence is needed to further validate the framework, and how this novel perspective on memory organization may guide future research.


Subject(s)
Brain , Memory , Humans , Learning , Corpus Striatum , Hippocampus
5.
Epilepsia ; 65(3): 753-765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38116686

ABSTRACT

OBJECTIVE: Statistical learning, the fundamental cognitive ability of humans to extract regularities across experiences over time, engages the medial temporal lobe (MTL) in the healthy brain. This leads to the hypothesis that statistical learning (SL) may be impaired in patients with epilepsy (PWE) involving the temporal lobe, and that this impairment could contribute to their varied memory deficits. In turn, studies done in collaboration with PWE, that evaluate the necessity of MTL circuitry through disease and causal perturbations, provide an opportunity to advance basic understanding of SL. METHODS: We implemented behavioral testing, volumetric analysis of the MTL substructures, and direct electrical brain stimulation to examine SL across a cohort of 61 PWE and 28 healthy controls. RESULTS: We found that behavioral performance in an SL task was negatively associated with seizure frequency irrespective of seizure origin. The volume of hippocampal subfields CA1 and CA2/3 correlated with SL performance, suggesting a more specific role of the hippocampus. Transient direct electrical stimulation of the hippocampus disrupted SL. Furthermore, the relationship between SL and seizure frequency was selective, as behavioral performance in an episodic memory task was not impacted by seizure frequency. SIGNIFICANCE: Overall, these results suggest that SL may be hippocampally dependent and that the SL task could serve as a clinically useful behavioral assay of seizure frequency that may complement existing approaches such as seizure diaries. Simple and short SL tasks may thus provide patient-centered endpoints for evaluating the efficacy of novel treatments in epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Magnetic Resonance Imaging , Brain , Hippocampus , Seizures
6.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38106228

ABSTRACT

When you perceive or remember one thing, other related things come to mind. This competition has consequences for how these items are later perceived, attended, or remembered. Such behavioral consequences result from changes in how much the neural representations of the items overlap, especially in the hippocampus. These changes can reflect increased (integration) or decreased (differentiation) overlap; previous studies have posited that the amount of coactivation between competing representations in cortex determines which will occur: high coactivation leads to hippocampal integration, medium coactivation leads to differentiation, and low coactivation is inert. However, those studies used indirect proxies for coactivation, by manipulating stimulus similarity or task demands. Here we induce coactivation of competing memories in visual cortex more directly using closed-loop neurofeedback from real-time fMRI. While viewing one object, participants were rewarded for implicitly activating the representation of another object as strongly as possible. Across multiple real-time fMRI training sessions, they succeeded in using the neurofeedback to induce coactivation. Compared with untrained objects, this coactivation led to behavioral and neural integration: The trained objects became harder for participants to discriminate in a categorical perception task and harder to decode from patterns of fMRI activity in the hippocampus.

7.
J Neurosci ; 43(43): 7198-7212, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37813570

ABSTRACT

Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution fMRI, and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure (in both sexes). Behaviorally, hydrocortisone promoted the encoding of subjectively arousing, positive associative memories. Neurally, hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional associations. Cortisol also modified the relationship between hippocampal representations and associative memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional associative memory enhancements under cortisol.SIGNIFICANCE STATEMENT Our daily lives are filled with stressful events, which powerfully shape the way we form episodic memories. For example, stress and stress-related hormones can enhance our memory for emotional events. However, the mechanisms underlying these memory benefits are unclear. In the current study, we combined functional neuroimaging, behavioral tests of memory, and double-blind, placebo-controlled hydrocortisone administration to uncover the effects of the stress-related hormone cortisol on the function of the human hippocampus, a brain region important for episodic memory. We identified novel ways in which cortisol can enhance hippocampal function to promote emotional memories, highlighting the adaptive role of cortisol in shaping memory formation.


Subject(s)
Hydrocortisone , Memory, Episodic , Male , Female , Humans , Hydrocortisone/pharmacology , Brain , Hippocampus , Emotions , Magnetic Resonance Imaging/methods
8.
Nat Comput Sci ; 3(3): 240-253, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37693659

ABSTRACT

The complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure. Here we introduce a nonlinear manifold learning method for time-series data-including those from fMRI-called temporal potential of heat-diffusion for affinity-based transition embedding (T-PHATE). In addition to recovering a low-dimensional intrinsic manifold geometry from time-series data, T-PHATE exploits the data's autocorrelative structure to faithfully denoise and unveil dynamic trajectories. We empirically validate T-PHATE on three fMRI datasets, showing that it greatly improves data visualization, classification, and segmentation of the data relative to several other state-of-the-art dimensionality-reduction benchmarks. These improvements suggest many potential applications of T-PHATE to other high-dimensional datasets of temporally diffuse processes.

9.
Cereb Cortex ; 33(21): 10820-10835, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37718160

ABSTRACT

Functional brain networks are assessed differently earlier versus later in development: infants are almost universally scanned asleep, whereas adults are typically scanned awake. Observed differences between infant and adult functional networks may thus reflect differing states of consciousness rather than or in addition to developmental changes. We explore this question by comparing functional networks in functional magnetic resonance imaging (fMRI) scans of infants during natural sleep and awake movie-watching. As a reference, we also scanned adults during awake rest and movie-watching. Whole-brain functional connectivity was more similar within the same state (sleep and movie in infants; rest and movie in adults) compared with across states. Indeed, a classifier trained on patterns of functional connectivity robustly decoded infant state and even generalized to adults; interestingly, a classifier trained on adult state did not generalize as well to infants. Moreover, overall similarity between infant and adult functional connectivity was modulated by adult state (stronger for movie than rest) but not infant state (same for sleep and movie). Nevertheless, the connections that drove this similarity, particularly in the frontoparietal control network, were modulated by infant state. In sum, infant functional connectivity differs between sleep and movie states, highlighting the value of awake fMRI for studying functional networks over development.


Subject(s)
Brain Mapping , Brain , Adult , Humans , Infant , Brain Mapping/methods , Brain/diagnostic imaging , Sleep , Consciousness , Rest , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
10.
Neuroimage ; 276: 120221, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37290674

ABSTRACT

The same visual input can serve as the target of perception or as a trigger for memory retrieval depending on whether cognitive processing is externally oriented (perception) or internally oriented (memory retrieval). While numerous human neuroimaging studies have characterized how visual stimuli are differentially processed during perception versus memory retrieval, perception and memory retrieval may also be associated with distinct neural states that are independent of stimulus-evoked neural activity. Here, we combined human fMRI with full correlation matrix analysis (FCMA) to reveal potential differences in "background" functional connectivity across perception and memory retrieval states. We found that perception and retrieval states could be discriminated with high accuracy based on patterns of connectivity across (1) the control network, (2) the default mode network (DMN), and (3) retrosplenial cortex (RSC). In particular, clusters in the control network increased connectivity with each other during the perception state, whereas clusters in the DMN were more strongly coupled during the retrieval state. Interestingly, RSC switched its coupling between networks as the cognitive state shifted from retrieval to perception. Finally, we show that background connectivity (1) was fully independent from stimulus-related variance in the signal and, further, (2) captured distinct aspects of cognitive states compared to traditional classification of stimulus-evoked responses. Together, our results reveal that perception and memory retrieval are associated with sustained cognitive states that manifest as distinct patterns of connectivity among large-scale brain networks.


Subject(s)
Memory, Episodic , Memory , Humans , Memory/physiology , Brain/physiology , Magnetic Resonance Imaging/methods , Neuroimaging , Perception , Brain Mapping , Neural Pathways/physiology
11.
J Cogn Neurosci ; 35(8): 1312-1328, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37262357

ABSTRACT

We encounter the same people, places, and objects in predictable sequences and configurations. Humans efficiently learn these regularities via statistical learning. Importantly, statistical learning creates knowledge not only of specific regularities but also of regularities that apply more generally across related experiences (i.e., across members of a category). Prior evidence for different levels of learning comes from post-exposure behavioral tests, leaving open the question of whether more abstract regularities are detected online during initial exposure. We address this question by measuring neural entrainment in intracranial recordings. Neurosurgical patients viewed a stream of photographs with regularities at one of two levels: In the exemplar-level structured condition, the same photographs appeared repeatedly in pairs. In the category-level structured condition, the photographs were trial-unique but their categories were paired across repetitions. In a baseline random condition, the same photographs repeated but in a scrambled order. We measured entrainment at the frequency of individual photographs, which was expected in all conditions, but critically also at half that frequency-the rate at which to-be-learned pairs appeared in the two structured (but not random) conditions. Entrainment to both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and temporal regions. Many electrode contacts were sensitive to only one level of structure, but a significant number encoded both levels. These findings suggest that the brain spontaneously uncovers category-level regularities during statistical learning, providing insight into the brain's unsupervised mechanisms for building flexible and robust knowledge that generalizes across input variation and conceptual hierarchies.


Subject(s)
Brain , Learning , Humans , Brain/diagnostic imaging , Concept Formation , Temporal Lobe , Knowledge
12.
Cogn Affect Behav Neurosci ; 23(3): 645-665, 2023 06.
Article in English | MEDLINE | ID: mdl-37316611

ABSTRACT

Expectations can inform fast, accurate decisions. But what informs expectations? Here we test the hypothesis that expectations are set by dynamic inference from memory. Participants performed a cue-guided perceptual decision task with independently-varying memory and sensory evidence. Cues established expectations by reminding participants of past stimulus-stimulus pairings, which predicted the likely target in a subsequent noisy image stream. Participant's responses used both memory and sensory information, in accordance to their relative reliability. Formal model comparison showed that the sensory inference was best explained when its parameters were set dynamically at each trial by evidence sampled from memory. Supporting this model, neural pattern analysis revealed that responses to the probe were modulated by the specific content and fidelity of memory reinstatement that occurred before the probe appeared. Together, these results suggest that perceptual decisions arise from the continuous sampling of memory and sensory evidence.


Subject(s)
Cues , Memory , Humans , Reproducibility of Results
13.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162937

ABSTRACT

Statistical learning, the fundamental cognitive ability of humans to extract regularities across experiences over time, engages the medial temporal lobe in the healthy brain. This leads to the hypothesis that statistical learning may be impaired in epilepsy patients, and that this impairment could contribute to their varied memory deficits. In turn, epilepsy patients provide a platform to advance basic understanding of statistical learning by helping to evaluate the necessity of medial temporal lobe circuitry through disease and causal perturbations. We implemented behavioral testing, volumetric analysis of the medial temporal lobe substructures, and direct electrical brain stimulation to examine statistical learning across a cohort of 61 epilepsy patients and 28 healthy controls. Behavioral performance in a statistical learning task was negatively associated with seizure frequency, irrespective of where seizures originated in the brain. The volume of hippocampal subfields CA1 and CA2/3 correlated with statistical learning performance, suggesting a more specific role of the hippocampus. Indeed, transient direct electrical stimulation of the hippocampus disrupted statistical learning. Furthermore, the relationship between statistical learning and seizure frequency was selective: behavioral performance in an episodic memory task was impacted by structural lesions in the medial temporal lobe and by antiseizure medications, but not by seizure frequency. Overall, these results suggest that statistical learning may be hippocampally dependent and that this task could serve as a clinically useful behavioral assay of seizure frequency distinct from existing neuropsychological tests. Simple and short statistical learning tasks may thus provide patient-centered endpoints for evaluating the efficacy of novel treatments in epilepsy.

14.
bioRxiv ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37066178

ABSTRACT

What determines when neural representations of memories move together (integrate) or apart (differentiate)? Classic supervised learning models posit that, when two stimuli predict similar outcomes, their representations should integrate. However, these models have recently been challenged by studies showing that pairing two stimuli with a shared associate can sometimes cause differentiation, depending on the parameters of the study and the brain region being examined. Here, we provide a purely unsupervised neural network model that can explain these and other related findings. The model can exhibit integration or differentiation depending on the amount of activity allowed to spread to competitors - inactive memories are not modified, connections to moderately active competitors are weakened (leading to differentiation), and connections to highly active competitors are strengthened (leading to integration). The model also makes several novel predictions - most importantly, that differentiation will be rapid and asymmetric. Overall, these modeling results provide a computational explanation for a diverse set of seemingly contradictory empirical findings in the memory literature, as well as new insights into the dynamics at play during learning.

15.
Cereb Cortex ; 33(13): 8477-8484, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37100085

ABSTRACT

Making sense of speech in a second language relies on multiple abilities. Differences in brain activity related to proficiency in language tasks have often been attributed to processing demands. However, during naturalistic narrative comprehension, listeners at different proficiency levels may form different representations of the same speech. We hypothesized that the intersubject synchronization of these representations could be used to measure second-language proficiency. Using a searchlight-shared response model, we found highly proficient participants showed synchronization in regions similar to those of native speakers, including in the default mode network and the lateral prefrontal cortex. In contrast, participants with low proficiency showed more synchronization in auditory cortex and word-level semantic processing areas in the temporal lobe. Moderate proficiency showed the greatest neural diversity, suggesting lower consistency in the source of this partial proficiency. Based on these synchronization differences, we were able to classify the proficiency level or predict behavioral performance on an independent English test in held-out participants, suggesting the identified neural systems represented proficiency-sensitive information that was generalizable to other individuals. These findings suggest higher second-language proficiency leads to more native-like neural processing of naturalistic language, including in systems beyond the cognitive control network or the core language network.


Subject(s)
Multilingualism , Speech Perception , Humans , Language , Comprehension , Semantics , Prefrontal Cortex/physiology , Speech , Speech Perception/physiology
16.
bioRxiv ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36798309

ABSTRACT

Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution functional magnetic resonance imaging (fMRI), and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure. Hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional information. Cortisol also modified the relationship between hippocampal representations and memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional memory enhancements under stress.

17.
Dev Psychobiol ; 65(1): e22346, 2023 01.
Article in English | MEDLINE | ID: mdl-36567649

ABSTRACT

The role of visual experience in the development of face processing has long been debated. We present a new angle on this question through a serendipitous study that cannot easily be repeated. Infants viewed short blocks of faces during fMRI in a repetition suppression task. The same identity was presented multiple times in half of the blocks (repeat condition) and different identities were presented once each in the other half (novel condition). In adults, the fusiform face area (FFA) tends to show greater neural activity for novel versus repeat blocks in such designs, suggesting that it can distinguish same versus different face identities. As part of an ongoing study, we collected data before the COVID-19 pandemic and after an initial local lockdown was lifted. The resulting sample of 12 infants (9-24 months) divided equally into pre- and post-lockdown groups with matching ages and data quantity/quality. The groups had strikingly different FFA responses: pre-lockdown infants showed repetition suppression (novel > repeat), whereas post-lockdown infants showed the opposite (repeat > novel), often referred to as repetition enhancement. These findings provide speculative evidence that altered visual experience during the lockdown, or other correlated environmental changes, may have affected face processing in the infant brain.


Subject(s)
COVID-19 , Facial Recognition , Adult , Humans , Infant , Pandemics , Communicable Disease Control , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Photic Stimulation , Pattern Recognition, Visual
18.
J Neurosci ; 42(48): 9053-9068, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36344264

ABSTRACT

The function of long-term memory is not just to reminisce about the past, but also to make predictions that help us behave appropriately and efficiently in the future. This predictive function of memory provides a new perspective on the classic question from memory research of why we remember some things but not others. If prediction is a key outcome of memory, then the extent to which an item generates a prediction signifies that this information already exists in memory and need not be encoded. We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in visual cortex during a statistical learning task and link the strength of these predictions to subsequent episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of which contained regularities that allowed the category of the next scene to be predicted. We verified that statistical learning occurred using neural frequency tagging and measured category prediction with multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by predictive items that were subsequently forgotten. Such interference provides a mechanism by which prediction can regulate memory formation to prioritize encoding of information that could help learn new predictive relationships.SIGNIFICANCE STATEMENT When faced with a new experience, we are rarely at a loss for what to do. Rather, because many aspects of the world are stable over time, we rely on past experiences to generate expectations that guide behavior. Here we show that these expectations during a new experience come at the expense of memory for that experience. From intracranial recordings of visual cortex, we decoded what humans expected to see next in a series of photographs based on patterns of neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak expectations could help improve these expectations in future encounters.


Subject(s)
Memory, Episodic , Visual Cortex , Male , Female , Humans , Learning/physiology , Visual Cortex/physiology , Mental Recall/physiology , Memory, Long-Term
19.
Proc Natl Acad Sci U S A ; 119(43): e2200257119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252007

ABSTRACT

How infants experience the world is fundamental to understanding their cognition and development. A key principle of adult experience is that, despite receiving continuous sensory input, we perceive this input as discrete events. Here we investigate such event segmentation in infants and how it differs from adults. Research on event cognition in infants often uses simplified tasks in which (adult) experimenters help solve the segmentation problem for infants by defining event boundaries or presenting discrete actions/vignettes. This presupposes which events are experienced by infants and leaves open questions about the principles governing infant segmentation. We take a different, data-driven approach by studying infant event segmentation of continuous input. We collected whole-brain functional MRI (fMRI) data from awake infants (and adults, for comparison) watching a cartoon and used a hidden Markov model to identify event states in the brain. We quantified the existence, timescale, and organization of multiple-event representations across brain regions. The adult brain exhibited a known hierarchical gradient of event timescales, from shorter events in early visual regions to longer events in later visual and associative regions. In contrast, the infant brain represented only longer events, even in early visual regions, with no timescale hierarchy. The boundaries defining these infant events only partially overlapped with boundaries defined from adult brain activity and behavioral judgments. These findings suggest that events are organized differently in infants, with longer timescales and more stable neural patterns, even in sensory regions. This may indicate greater temporal integration and reduced temporal precision during dynamic, naturalistic perception.


Subject(s)
Brain , Magnetic Resonance Imaging , Adult , Brain/diagnostic imaging , Cognition , Humans , Infant
20.
Neuropsychologia ; 174: 108341, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35961387

ABSTRACT

Distinct brain systems are thought to support statistical learning over different timescales. Regularities encountered during online perceptual experience can be acquired rapidly by the hippocampus. Further processing during offline consolidation can establish these regularities gradually in cortical regions, including the medial prefrontal cortex (mPFC). These mechanisms of statistical learning may be critical during spatial navigation, for which knowledge of the structure of an environment can facilitate future behavior. Rapid acquisition and prolonged retention of regularities have been investigated in isolation, but how they interact in the context of spatial navigation is unknown. We had the rare opportunity to study the brain systems underlying both rapid and gradual timescales of statistical learning using intracranial electroencephalography (iEEG) longitudinally in the same patient over a period of three weeks. As hypothesized, spatial patterns were represented in the hippocampus but not mPFC for up to one week after statistical learning and then represented in the mPFC but not hippocampus two and three weeks after statistical learning. Taken together, these findings suggest that the hippocampus may contribute to the initial extraction of regularities prior to cortical consolidation.


Subject(s)
Memory Consolidation , Spatial Navigation , Humans , Learning , Mental Recall , Prefrontal Cortex , Spatial Memory
SELECTION OF CITATIONS
SEARCH DETAIL
...